Skip to content Skip to navigation

Introduction to Statistical Learning

Date: 
Monday, January 4, 2016 to Wednesday, March 16, 2016
Go to Course

Now Open! (Fee Applies.)

Overview

New techniques have emerged for both predictive and descriptive learning that help us make sense of vast and complex data sets. The particular focus of this course will be on regression and classification methods as tools for facilitating machine learning. In-class problem solving and discussion sessions will be used and computing will be done in R.

Instructors

Topics Include

  • Introduction to supervised learning
  • Resampling, cross-validation and the bootstrap
  • Model selection and regularization methods
  • Tree-based methods, random forests and boosting
  • Support-vector machines
  • Nonlinear methods and generalized additive models
  • Principal components and clustering

Prerequisites

First courses in statistics and/or probability, linear algebra, and computer programming.


View All Courses

Access learning material from upcoming, self-study, and completed courses...