Deep Generative Models

CS236

Stanford School of Engineering

  • Fee:
    Fee may apply

Computer Science: Deep Generative Models

Description

Generative models are a key paradigm for probabilistic reasoning within graphical models and probabilistic programming languages. It is one of the exciting and rapidly-evolving fields of statistical machine learning and artificial intelligence. Recent advances in parameterizing generative models using deep neural networks, combined with progress in stochastic optimization methods, have enabled scalable modeling of complex, high-dimensional data including images, text, and speech. In this course, we will study the probabilistic foundations and learning algorithms for deep generative models and discuss application areas that have benefitted from deep generative models.

What you will learn

  • A powerful way of learning data distribution
  • How to apply various algorithms to decision making, finding analogies, and predicting future events
  • Various applications to deep generative models including computer vision, speech and language processing

Instructor(s)

Prerequisites

Basic knowledge about machine learning from at least one of CS 221, 228, 229 or 230. Students will work with computational and mathematical models and should have a basic knowledge of probabilities and calculus. Proficiency in some programming language, preferably Python, required.

Topics include

  • Autoregressive models
  • Variational autoencoders
  • Normalizing flow models
  • Generative adversarial networks
  • Energy-based models

Notes

Note on Course Availability

This course is typically offered Autumn quarter.

The course schedule is displayed for planning purposes – courses can be modified, changed, or cancelled. Course availability will be considered finalized on the first day of open enrollment. For quarterly enrollment dates, please refer to our graduate certificate homepage.

002 Autumn 2019-20 Online

Enroll Now

Dates:September 23 - December 6, 2019
Days: Mon
Units: 3.00
Instructors:
Delivery Option:
Online
Fees:
For Credit $3,900.00 ?

Notes

Enrollment Dates: August 1 to September 9, 2019

Computer Science Department Requirement
Students taking graduate courses in Computer Science must enroll for the maximum number of units and maintain a B or better in each course in order to continue taking courses under the Non Degree Option.

This course may not currently be available to learners in some states and territories.